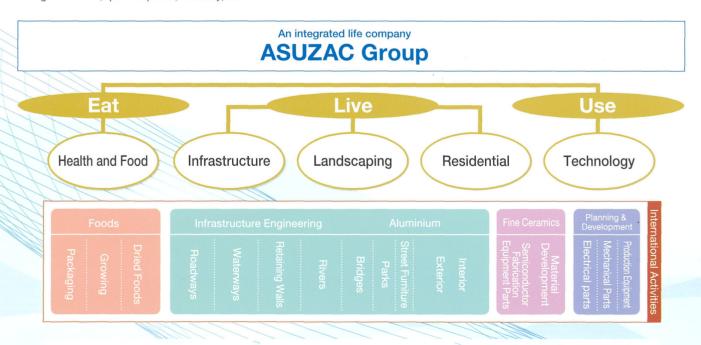


Fine Ceramics Division

http://www.asuzac-ceramics.jp/

Mission

ASUZAC Group, as an integrated life company, constantly focuses on society's needs.


- Customer satisfaction
- Cultivation of civilization
- Growth and stability
- Contribution to society
- Expansion into new industries

Stance

We at ASUZAC strive to serve our customers, and the community, through teamwork, quick response, creativity, and devotion.

Our Philosophy

- 1. To serve our customers and society honestly and sincerely
- 2. To provide our customers and society with better-than-expected value
- 3. To demonstrate group cooperation while growing our individual capabilities
- 4. To realize that nothing is complete; innovation is constant
- 5. To reconcile work culture with personal growth
- 6. To be cheerful and make work fun

ASUZAC Group

Established April, 1946 President/CEO Masanao Kubo Companies 9 (4 domestic, 5 global) Divisions 5

Employees 1228 (600 domestic, 628 global)

ASUZAC Inc.

Headquarters 981 Nakayama, Takayama, Nagano, Japan 382-8508

Established Capital

April. 1946 63.5 million yen President/CEO Masanao Kubo

ASUZAC FOODS Inc.

293-45 Yonamochi, Suzaka,

Nagano, Japan 382-0041 Established November, 1973 98 million yen President/CEO Masanao Kubo

Our Product Lineup

MATERIAL CHARACTERISTICS

As of Aug-2017

												As of Aug-2017
MATERIAL CHARACTERISTICS		UNIT	Alumina				Zirconia	Silicon Carbide		Electrically Conductive: Corseed	Low Thermally Conductive: Alsima L	R&D/Prototype Purposed: Black Almina
			AR-99.6	ARW	ARK	AR-4N	AZI	ASiC	SiC3N	ACTR	ARSM-L	AR(B)
	Purity	%	99.6	99.6	96.0	99.99	92	-	99.9	99.8	-	99.9
	Color Tone	-	Ivory	White	White	White	White	Black	Black	Dark Gray	lvory	Black
	Denstity	g/cm³	3.94	3.90	3.75	3.94	6.00	3.14	3.19	4.24	2.41	3.75
stics	Flexural Rigidity	MPa (3points)	370	400	370	330	980	410	450	310	146	539
acteris	Young's Module	GPa	390	370	340	360	210	430	446	288	115	363
Mecanical Characteristics	Vickers Hardness	GPa	14.7	14.7	14.0	15.7	11.8	28.0	28.0	10.0	6.5	10.6
	Poisson's Ratio		0.24	0.24	0.24	0.23	-	0.17	0.17	0.27	0.29	0.23
	Fracture Toughness	MPa m ^{1/2}	4.0	3.0	3.0	4.0	7.0	2~3	2~3	3.0*1	1.4*1	3.2
Heat Characteristics	Coefficient of Thermal Expansion	×10 ⁻⁶ [Ambient~800°C]	7.7	7.7	7.7	7.7	10	4.1	4.1	8.8	2.1	8.1
	Thermal Conductivity	W/(m·K)	32.0	28.0	23.0	31.0	4.0	170.0	140.0	5.5	2.9	31.2
	Specific Heat	J/(kg·K)	0.78×10 ³	0.78×10 ³	0.78×10 ³	0.78×10 ³	-	0.68×10 ³	0.57×10 ³	0.67×10 ³	0.75×10 ³	0.8×10 ³
Electrical Characteristics	Dielectric Constant	[1MHz]	10.2	9.7	9.5	9.5	-	-	-	-	4.8	16.7
	Dielectric Loss	×10 ⁻⁴ [1MHz]	70	5	5	5 -	-	-	-	-	50	10
ical Ch	Volume Resistivity	Ω·cm	>1015	>1015	>1015	>1015	>1012	×10 ⁶	×10 ⁸	1	>1014	>1014
Optical Characteristics Electri	Breakdown Voltage	kV/mm	13.0	14.5	14.5	13.0	-	-	-	-	14.5	9.3
	Reflectivity	% [240-2,600nm wave length range, Measuring Plane: Approx.Ra0.8]	18~93	-	-	-	30~77	11.1~25.1	17~31	-	-	5.1~15.3
Features and Applications			-High Rigidity -Excellent Electrical Insulation -Excellent Wear Resistance				- Excellent Thermal Resistance - Excellent Electrical Conductivit - Excellent Thermal Resistance - High Rigidity - Excellent Wear Resistance - Excellent Chemical Stress		nal Resistance	Conductivity Less Poreless Comapct Substance than Almina Les in Deduction Resistance		 Use in Reduction atmosphere
						·High Purity ·Less Contamination	(Except hydrofluoric acid)			Atmosphere at High Temperature	-Low Thermal Conductivity	at high temperature

This chart is intended to illustrate typical properties found in the scientific and industrial literature. Property values may vary depending on method of manufacture and size/shape of component. Reflection rate differs according to wave length of the light. Please contact us for further information. %1 Figures in Alsima L and Corseed are measured with use of the SEVNB method.

■ MATERIAL CHARACTERISTICS Porous Ceramics

As of May-2016

	UNIT	Fo	or filter,rectifier,	jet		For Va	acuum				
MATERIAL CHARACTERISTICS				Alu	mina		•	Silicon Carbide	Alumina	Silicon Carbide	Alsima
OF WILL MOTE MOTION		AZP-50	AZP-60	AZP-60B	AZPW-40	AZPW-45	AZPWB40	AZPS-40			
Porosity	%	50	60	73	40	43	35	40	1.0	2.2	7.3
Pore Size	μm	5~40	5~40	5~40	50~100	300~1000	50~200	5~30	Ε,	-	5~20
Bulk density	g/cm³	1.82	1.57	1.04	2.56	2.4	2.48	1.9	3.94	3.15	2.41
Transmission	(×10 ⁻¹³ m ²)	0.8	5.73	-	100	-	270	6.1	0	0	0
Purity	%	96	96	-	95	97	90	98	99.6	98	98
Flexural Rigidity	MPa	60	35	30	76	17	22	80	370	410	146
Dielectric constant	1MHz	-	-	-	4.1	-	-	-	10.2		4.8
Thermal conductivity	W/(m·K)	=	-	-	3	-	5	70	32	170	2.9
Thermal Expansion Coefficient	×10 ⁻⁶ (RT-800°C)	-	-	-	7.6 (RT-700°C)	7.6 (RT-700°C)	7.6	4.4	7.7	4.1	2.1
Temperature of heat resistance (atmosphere)	°C	1600	1600	600	1400	1400	600	1400 (Inert atmosphere)	1600	1400	1300
Color	-	White	White	Black	White	White	Black	Gray	Ivory	Black	Gray
	weight saving	0	0	0	×	×	0	×			
17	insulation	0	0	0	×	×	0	×			
Use	Vacuum Chuck	×	0	0	0	0	0	0			
	filter,rectifier,jet	×	0	0	0	0	0	0			

>> Our History

1981 Asuzac founded as Akita Laboratories

1982 First Materials Center is added

1983 Second Materials Center is added

1985 Sales of fine ceramics for the semiconductor industry begins

Japan's first single-part wafer hands with adhesive-free

integrated vacuum chamber are produced

Molding and thin-sheet ceramics production begins

1986 Third Materials Center is added

1989 Machining Center is built

1997 Company name is changed to Asuzazc Fine Ceramics Division

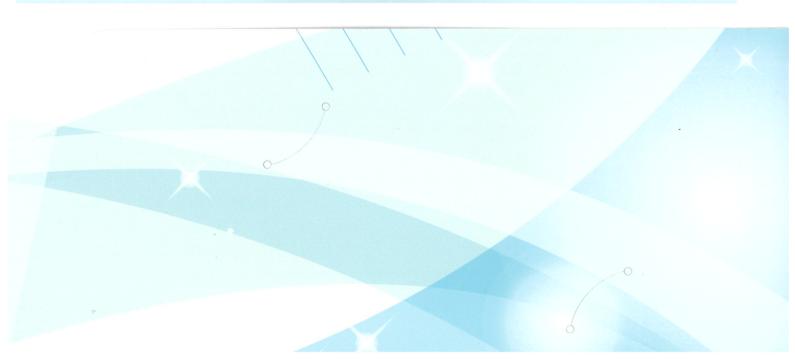
2000 Asuzac expands to Ho Chi Minh City in Vietnam

2005 ISO 14001 Certification is acquired

2016 Inspection and Cleaning Center is built

ISO 9001 Certified

Machining Center


Materials Center

Inspection and Cleaning Center

Vietnam Factory VSIP (Vietnam Singapore Industrial Park) ISO 9001 Certified


ASUZAC enables the evolution of industrial technology with our advanced ceramic material capabilities.

At ASUZAC, we have contributed to the dynamic development of industrial technology by honing the fine ceramics materials required by a wide range of industrial applications. We endlessly innovate to unleash the potential that ceramics possess, such as strength, durability, heat and chemical resistance. and electrical properties surpassing those of metal.

Silicon Carbide

Alsima

Parts up to 4 meters in length (160 inches)

Transport arms

Vacuum hands with built-in inner channel

Porous chucks

Manufacturing Process

From the mixing of raw material to molding, sintering, machining, inspection, and shipping, we utilize a comprehensive in-house production process to deliver fine ceramic parts of unparalleled quality.

Ball Mill

02 Powder Creation

Spray Dryer

03 Molding

04 Green Machining

CIP

NC Router

05 Sintering

Sintering Furnaces

06 Final Machining

07 Inspection

Surface Grinder

Machining Center

CMM

Automated Cleaning Machine

Fine Ceramics Division

HQ and Factory 981 Nakayama, Takayama, Nagano, Japan 382-8508

TEL 026-248-1626 FAX 026-251-2160

Email fcerainf@asuzac.co.jp

Tokyo Office Sanshin Hirose Building 3F 3-6-1

Uchikanda, Chiyoda, Tokyo, Japan 101-0047 TEL 03-3251-8225 FAX 03-3251-8226

Osaka Office Shin-Osaka Takamitsu Building 7F 5-3-4

Nishinakajima, Yodogawa, Osaka, Japan 532-0011

TEL 06-6309-1879 FAX 06-6309-1793

Kyushu Office Taisei Hakata-eki-higashi Building 809 1-9-1

Hakata-eki-higashi, Hakata, Fukuoka, Japan 812-0013

TEL 092-431-2330 FAX 092-477-3031